2017年4月27日木曜日

学習環境

数学読本〈4〉数列の極限,順列/順列・組合せ/確率/関数の極限と微分法(松坂 和夫(著)、岩波書店)の第16章(確からしさをみる - 確率)、16.2(条件つき確率と確率の乗法定理)、いくつかの例、問19、20、21、22.を取り組んでみる。


  1. 1 6 3 = 1 216

  2. P( A )=1 ( 1 2 ) 2 = 3 4 P( AB )= 1 4 P A ( B )= 1 4 3 4 = 1 3

    1. P( A )= 3 6 · 3 6 + 3 6 · 3 6 = 1 2

    2. P( B )=1 ( 5 6 ) 2 = 11 36

    3. P( AB )= 1 6 · 3 6 + 3 6 · 1 6 1 6 · 1 6 = 5 36 P A ( B )= P( AB ) P( A ) = 5·2 36 = 5 18

    4. P B ( A )= P( AB ) P( B ) = 5 11

  3. 13 52 · 13 51 ·2= 1 2 · 13 51 = 13 102

コード(Emacs)

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
回数: <input id="n0" type="number" min="1" step="1" value="5000">
<br>
<button id="run0">run</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>
<script src="sample19.js"></script>    

JavaScript

let pre0 = document.querySelector('#output0'),
    input_n = document.querySelector('#n0'),
    btn0 = document.querySelector('#run0'),
    btn1 = document.querySelector('#clear0'),
    div0 = document.querySelector('#graph0'),
    width = 600,
    height = 600,
    padding = 50,
    p = (x) => pre0.textContent += x + '\n';

let range = (n) => {
    let result = [];
    for (let i = 0; i < n; i += 1) {
        result.push(i);
    }
    return result;
};

let f = (n) =>
    range(n)
    .map(() => {
        let a = Math.floor(Math.random() * 6) + 1,
            b = Math.floor(Math.random() * 6) + 1,
            c = Math.floor(Math.random() * 6) + 1;

        return a === 1 && b === 2 && c === 3;
    })
    .filter((bln) => bln)
    .length / n;

let output = () => {
    let n = parseInt(input_n.value, 10),
        points = [],
        result,
        t;
    
    p('19.');
    for (let i = 1; i <= n; i += 1) {
        points.push([i, f(i)]);
    }
    t = points[points.length - 1][1];
    result = 1 / 216;
    p(t ===  result);
    p(t);
    p(result);
    p(Math.abs(t - result));

    let xscale = d3.scaleLinear()
        .domain([1, n])
        .range([padding, width - padding]);
    let ys = points.map((a) => a[1]);
    let yscale = d3.scaleLinear()
        .domain([Math.min(...ys), Math.max(...ys)])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', 1)
        .attr('fill', 'green');

    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);
};

input_n.onchange = output;
btn0.onclick = output;
btn1.onclick = () => pre0.textContent = '';

output();

回数: 

0 コメント:

コメントを投稿

Comments on Google+: