2017年7月3日月曜日

学習環境

数学読本〈5〉微分法の応用/積分法/積分法の応用/行列と行列式(松坂 和夫(著)、岩波書店)の第18章(曲線の性質、最大・最小 - 微分法の応用)、18.3(曲線の凹凸、曲線をえがくこと)、第2次導関数の符号と凹凸、問33、34、35.を取り組んでみる。


    1. y'=3 x 2 +6x y''=6x+6=6( x1 ) ( 1,1+3 )=( 1,2 )

    2. y'=2( x 2 1 )2x=4( x 3 x ) y''=4( 3 x 2 1 ) ( ± 1 3 , ( 1 3 1 ) 2 )=( ± 1 3 , 4 9 )

    3. y'= 1 cos 2 x y''= 2cosxsinx cos 4 x = sin2x cos 4 x π<2x<π ( 0,0 )

  1. a0 f(x)=a x 3 +b x 2 +cx+d f'(x)=3a x 2 +2bx+c f''(x)=6ax+2b=2(3ax+b) ( b 3a ,f( b 3a ))

  2. g( x )=f( x )( f'( a )( xa )+f( a ) ) g'( x )=f'( x )f'( a ) g'( a )=0 x<a,a<x g'( x )>0 g( a )=0 x<a g( x )<0 x>a g( x )>0

コード(Emacs)

Python 3

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from sympy import pprint, symbols, tan, Derivative, solve, plot

print('33.')
x = symbols('x')

fs = [-x ** 3 + 3 * x ** 2,
      (x ** 2 - 1) ** 2,
      tan(x)]

for i, f in enumerate(fs, 1):
    print('({0})'.format(i))
    d = Derivative(f, x, 2)
    pprint(d)
    f2 = d.doit()
    pprint(f2)
    s = solve(f2, x)
    pprint(s)
    for x0 in s:
        pprint(x0)
        pprint(f.subs({x: x0}))
        print()
    print()
    p = plot(f, show=False, legend=True)
    p.save('sample33_{0}.svg'.format(i))

print('34.')
a = symbols('a', nonzero=True)
b, c, d = symbols('b c d')
f = a * x ** 3 + b * x ** 2 + c * x + d
d = Derivative(f, x, 2)
pprint(d)
f2 = d.doit()
pprint(f2)
s = solve(f2, x)
pprint(s)
for x0 in s:
    pprint(x)
    pprint(f.subs({x: x0}))

入出力結果(Terminal, IPython)

$ ./sample33.py
33.
(1)
  2             
 d ⎛   3      2⎞
───⎝- x  + 3⋅x ⎠
  2             
dx              
6⋅(-x + 1)
[1]
1
2


(2)
  2⎛        2⎞
 d ⎜⎛ 2    ⎞ ⎟
───⎝⎝x  - 1⎠ ⎠
  2           
dx            
  ⎛   2    ⎞
4⋅⎝3⋅x  - 1⎠
⎡-√3   √3⎤
⎢────, ──⎥
⎣ 3    3 ⎦
-√3 
────
 3  
4/9

√3
──
3 
4/9


(3)
  2        
 d         
───(tan(x))
  2        
dx         
  ⎛   2       ⎞       
2⋅⎝tan (x) + 1⎠⋅tan(x)
[0, -∞⋅ⅈ, ∞⋅ⅈ]
0
0

-∞⋅ⅈ
-ⅈ

∞⋅ⅈ
ⅈ


34.
  2                       
 ∂ ⎛   3      2          ⎞
───⎝a⋅x  + b⋅x  + c⋅x + d⎠
  2                       
∂x                        
2⋅(3⋅a⋅x + b)
⎡-b ⎤
⎢───⎥
⎣3⋅a⎦
x
              3
    b⋅c    2⋅b 
d - ─── + ─────
    3⋅a       2
          27⋅a
$          

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.0001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-5">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="5">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-5">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="5">
<br>
<label for="dx0">dx0 = </label>
<input id="dx0" type="number" min="0" value="0.1">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample33.js"></script>    

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    input_dx0 = document.querySelector('#dx0'),
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2,
              input_dx0],
    p = (x) => pre0.textContent += x + '\n',
    range = (start, end, step=1) => {
        let res = [];
        for (let i = start; i < end; i += step) {
            res.push(i);
        }
        return res;
    };

let f1 = (x) => 1 / Math.cos(x) ** 2,
    f2 = (x) => Math.sin(2 * x) / Math.cos(x) ** 4,
    g = (x0) => (x) => f2(x0) * (x - x0) + f1(x0);

let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value),
        dx0 = parseFloat(input_dx0.value);
    
    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }

    let points = [],        
        lines = [],
        fns = [[f1, 'blue']],
        fns1 = [],
        fns2 = [[g, 'green']];

    fns.forEach((o) => {
        let [fn, color] = o;
        for (let x = x1; x <= x2; x += dx) {
            let y = fn(x);

            if (Math.abs(y) < Infinity) {
                points.push([x, y, color]);
            }
        }
    });
    fns1.forEach((o) => {
        let [fn, color] = o;

        lines.push([x1, fn(x1), x2, fn(x2), color]);
    });
    fns2.forEach((o) => {
        let [fn, color] = o;

        for (let x = x1; x <= x2; x += dx0) {
            let g = fn(x);
            
            lines.push([x1, g(x1), x2, g(x2), color]);
        }        
    });
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');
    
    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');
    
    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);

    [fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();








0 コメント:

コメントを投稿

Comments on Google+: