2017年7月29日土曜日

学習環境

数学読本〈5〉微分法の応用/積分法/積分法の応用/行列と行列式(松坂 和夫(著)、岩波書店)の第18章(曲線の性質、最大・最小 - 微分法の応用)、18.5(関数の近似、テイラーの定理)、関数の整級数展開(2)、問61-1、2、3、4、5.を取り組んでみる。


    1. f( x )=1cosx g( x )= x 2 lim x0 f( x )=0 lim x0 g( x )=0

      ロビタルの定理。

      lim x0 f( x ) g( x ) = lim x0 f'( x ) g'( x ) = lim x0 sinx 2x = 1 2

    2. f( x )=xsinx g( x )= x 3 lim x0 f( x )=0 lim x0 g( x )=0 f'( x )=1cosx g'( x )=3 x 2 lim x0 f'( x )=0 lim x0 g'( x )=0 f''( x )=sinx g''( x )=6x

      ロピタルの定理。

      lim x0 f( x ) g( x ) = lim x0 f'( x ) g'( x ) = lim x0 f''( x ) g''( x ) = lim x0 sinx 6x = 1 6

    3. f( x )= e 1 x 1 g( x )= 1 x lim x f( x )=0 lim x g( x )=0 f'( x )= e 1 x · 1 x 2 = e 1 x x 2 g'( x )= 1 x 2

      ロピタルの定理。

      lim x f( x ) g( x ) = lim x f'( x ) g'( x ) = lim x e 1 x x 2 1 x 2 = lim x e 1 x =1

    4. a h a 0 h0 f( h )= a h = e hloga f'( h )= e hloga loga f'( 0 )=loga

    5. 前問(4)より。

      a h b h h = a h 1+1 b h h = a h 1 h b h 1 h lim h0 ( a h 1 h b h 1 h ) =logalogb

コード(Emacs)

Python 3

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from sympy import pprint, symbols, cos, sin, exp, Limit, S, log, plot

x = symbols('x')
a, b = symbols('a b', positive=True)
fs = [((1 - cos(x)) / x ** 2, 0),
      ((x - sin(x)) / x ** 3, 0),
      (x * (exp(1 / x) - 1), S.Infinity),
      ((a ** x - 1) / x, 0),
      ((a ** x - b ** x) / x, 0)]

print('61.')
for i, (f, x0) in enumerate(fs, 1):
    print(f'({i})')
    l = Limit(f, x, x0)
    pprint(l)
    pprint(l.doit())
    try:
        p = plot(f, show=False, legend=True)
        p.save(f'sample1_{i}.svg')
    except Exception as err:
        print(type(err), err)
    print()

入出力結果(Terminal, IPython)

$ ./sample61.py
61.
(1)
     ⎛-cos(x) + 1⎞
 lim ⎜───────────⎟
x─→0⁺⎜      2    ⎟
     ⎝     x     ⎠
1/2

(2)
     ⎛x - sin(x)⎞
 lim ⎜──────────⎟
x─→0⁺⎜     3    ⎟
     ⎝    x     ⎠
1/6

(3)
    ⎛  ⎛ 1    ⎞⎞
    ⎜  ⎜ ─    ⎟⎟
    ⎜  ⎜ x    ⎟⎟
lim ⎝x⋅⎝ℯ  - 1⎠⎠
x─→∞            
1
/opt/local/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sympy/plotting/experimental_lambdify.py:232: UserWarning: The evaluation of the expression is problematic. We are trying a failback method that may still work. Please report this as a bug.
  warnings.warn('The evaluation of the expression is'

(4)
     ⎛ x    ⎞
     ⎜a  - 1⎟
 lim ⎜──────⎟
x─→0⁺⎝  x   ⎠
log(a)
<class 'ValueError'> The same variable should be used in all univariate expressions being plotted.

(5)
     ⎛ x    x⎞
     ⎜a  - b ⎟
 lim ⎜───────⎟
x─→0⁺⎝   x   ⎠
log(a) - log(b)
<class 'ValueError'> The same variable should be used in all univariate expressions being plotted.

$ 

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.0001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-10">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="10">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-10">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="10">
<br>
<label for="a0">a = </label>
<input id="a0" type="number" min="0" value="2">
<label for="b0">b = </label>
<input id="b0" type="number" min="0" value="3">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample61.js"></script>    
 

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    input_a0 = document.querySelector('#a0'),
    input_b0 = document.querySelector('#b0'),
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2,
              input_a0, input_b0],
    p = (x) => pre0.textContent += x + '\n',
    range = (start, end, step=1) => {
        let res = [];
        for (let i = start; i < end; i += step) {
            res.push(i);
        }
        return res;
    };

let f3 = (x) => x * (Math.exp(1 / x) - 1);
    
let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value),
        a0 = parseFloat(input_a0.value),
        b0 = parseFloat(input_b0.value);

    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }
    
    let points = [],
        y3 = Math.log(a0),
        y4 = Math.log(a0) - Math.log(b0),
        lines = [[x1, 1, x2, 1, 'orange'],
                 [x1, y3, x2, y3, 'brown'],
                 [x1, y4, x2, y4, 'purple']],
        f4 = (x) => (a0 ** x - 1) / x,
        f5 = (x) => (a0 ** x - b0 ** x) / x,
        fns = [[f3, 'red'],
               [f4, 'green'],
               [f5, 'blue']],
        fns1 = [],
        fns2 = [];

    fns.forEach((o) => {
        let [fn, color] = o;
        for (let x = x1; x <= x2; x += dx) {
            let y = fn(x);

            if (Math.abs(y) < Infinity) {
                points.push([x, y, color]);
            }
        }
    });
    fns1.forEach((o) => {
        let [fn, color] = o;
        
        lines.push([x1, fn(x1), x2, fn(x2), color]);
    });
    fns2.forEach((o) => {
        let [fn, color] = o;

        for (let x = x1; x <= x2; x += dx0) {
            let g = fn(x);
            
            lines.push([x1, g(x1), x2, g(x2), color]);
        }        
    });
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');
    
    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');
    
    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);

    [fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();








0 コメント:

コメントを投稿

Comments on Google+: