2017年7月6日木曜日

学習環境

数学読本〈5〉微分法の応用/積分法/積分法の応用/行列と行列式(松坂 和夫(著)、岩波書店)の第18章(曲線の性質、最大・最小 - 微分法の応用)、18.3(曲線の凹凸、曲線をえがくこと)、凸関数の定義のいいかえ、問41、42、43.を取り組んでみる。


  1. 帰納法により証明。

    t n =1 1in1 t i =0 f( t n x n )=f( x n )= t n f( x n ) t n <1 i=1 n1 t i + t n =1 i=1 n1 t i =1 t n i=1 n1 t i 1 t n =1 t i 1 t n 0 f( i=1 n t i x ) =f( i=1 n1 t i x + t n x ) =f( ( 1 t n ) i=1 n1 t i 1 t n x + t n x ) ( 1 t n )f( i=1 n1 t i 1 t n x )+ t n f( x ) ( 1 t n )( i=1 n1 ( t i 1 t n f( x ) ) )+ t n f( x ) = i=1 n1 ( t i f( x ) ) + t n f( x ) = i=1 n ( t i f( x ) )

  2. f( i=1 n x i n ) =f( i=1 n 1 n x i ) i=1 n 1 n =1 1 n 0

    前問、問41を利用。

    f( i=1 n x i n ) =f( i=1 n 1 n x i ) i=1 n 1 n =1 1 n 0 f( i=1 n 1 n x i ) i=1 n 1 n f( x i ) = 1 n i=1 n f( x i )

    fがIに置いて凹のとき、前問の問41は不等号の向きが反対になるので、本問も不等号の向きが反対になる。

    f( i=1 n 1 n x i ) 1 n i=1 n f( x i )

  3. 前問、問42の凹の場合を利用。

    log i=1 n x i n 1 n i=1 n log x i = 1 n log i=1 n x i =log ( i=1 n x i ) 1 n i=1 n x i n ( i=1 n x i ) 1 n

コード(Emacs)

Python 3

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from sympy import pprint, symbols, log, plot

x = symbols('x', positive=True)

p = plot(log(x + 1) - log(x), (x, 0.1, 50), show=False, legend=True)
p.save('sample41.svg')

入出力結果(Terminal, IPython)

$ ./sample41.py
$

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.0001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="0">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="10">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-5">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="5">
<br>
<label for="dx0">dx0 = </label>
<input id="dx0" type="number" min="0" value="0.1">


<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample41.js"></script>    

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    input_dx0 = document.querySelector('#dx0'),
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2,
              input_dx0],
    p = (x) => pre0.textContent += x + '\n',
    range = (start, end, step=1) => {
        let res = [];
        for (let i = start; i < end; i += step) {
            res.push(i);
        }
        return res;
    };

let f = (x) => Math.log(x),
    f1 = (x) => 1 / x,
    g = (x0) => (x) => f1(x0) * (x - x0) + f(x0);

let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value),
        dx0 = parseFloat(input_dx0.value);
    
    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }

    let points = [],        
        lines = [],
        fns = [[f, 'green']],
        fns1 = [],
        fns2 = [[g, 'orange']];

    fns.forEach((o) => {
        let [fn, color] = o;
        for (let x = x1; x <= x2; x += dx) {
            let y = fn(x);

            if (Math.abs(y) < Infinity) {
                points.push([x, y, color]);
            }
        }
    });
    fns1.forEach((o) => {
        let [fn, color] = o;
        
        lines.push([x1, fn(x1), x2, fn(x2), color]);
    });
    fns2.forEach((o) => {
        let [fn, color] = o;

        for (let x = x1; x <= x2; x += dx0) {
            let g = fn(x);
            
            lines.push([x1, g(x1), x2, g(x2), color]);
        }        
    });
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');
    
    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');
    
    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);

    [fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();








0 コメント:

コメントを投稿

Comments on Google+: